PRODUCT RELIABILITY REPORT FOR

MAX17042

Maxim Integrated

14460 Maxim Dr. Dallas, TX 75244

Approved by:

Don Lipps
Manager, Reliability Engineering

Conclusion:

The following qualification successfully meets the quality and reliability standards required of all Maxim Integrated products:
MAX17042

In addition, Maxim Integrated's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maximintegrated.com/qa/reliability/monitor.

Device Description:

A description of this device can be found in the product data sheet. You can find the product data sheet at http://www.maximintegrated.com/search/parts.mvp.

Reliability Derating:

The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

$$
\begin{aligned}
& \text { AfT }=\exp \left((\text { Ea/k })^{\star}(1 / \mathrm{Tu}-1 / \mathrm{Ts})\right)=\text { tu/ts } \\
& \text { AfT }=\text { Acceleration factor due to Temperature } \\
& \text { tu }=\text { Time at use temperature }\left(\mathrm{e} . \mathrm{g} .55^{\circ} \mathrm{C}\right) \\
& \text { ts }=\text { Time at stress temperature }\left(\mathrm{e} . \mathrm{g} .125^{\circ} \mathrm{C}\right) \\
& \mathrm{k}=\text { Boltzmann's Constant }\left(8.617 \times 10-5 \mathrm{eV} /{ }^{\circ} \mathrm{K}\right) \\
& \mathrm{Tu}=\text { Temperature at Use }\left({ }^{\circ} \mathrm{K}\right) \\
&\left.\mathrm{Ts}=\text { Temperature at Stress (}{ }^{\circ} \mathrm{K}\right) \\
& \text { Ea }=\text { Activation Energy }(\text { e.g. } 0.7 \mathrm{ev})
\end{aligned}
$$

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7 ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

$$
\begin{aligned}
\text { AfV } & =\exp \left(\mathrm{B}^{*}(\mathrm{Vs}-\mathrm{Vu})\right) \\
\text { AfV } & =\text { Acceleration factor due to Voltage } \\
\mathrm{Vs} & =\text { Stress Voltage (e.g. } 7.0 \text { volts) } \\
\text { Vu } & =\text { Maximum Operating Voltage (e.g. } 5.5 \text { volts) } \\
B & =\text { Constant related to failure mechanism type (e.g. 1.0, } 2.4,2.7, \text { etc.) }
\end{aligned}
$$

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, Fr , is related to the acceleration during life test by:
$\mathrm{Fr}=\mathrm{X} /(\mathrm{ts}$ * AfV * AfT * N * 2)
$X=$ Chi-Sq statistical upper limit
$\mathrm{N}=$ Life test sample size

Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

MTTF $=1 / \mathrm{Fr}$
NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process is:

FAILURE RATE:	MTTF (YRS):	3768	FITS:	30.3
	DEVICE HOURS:	30241710	FAILS:	0

Only data from Operating Life or similar stresses are used for this calculation.
The parameters used to calculate this failure rate are as follows:
Cf: 60\%
Ea: 0.7
B: 0
Tu: $25{ }^{\circ} \mathrm{C}$
Vu: 5.5 Volts

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. Bold Product Number denotes specific product data.

Device Information:									
Process:		Maxim X3 \& SA Fabs S18C 3V \& 5V CMOS, 4 metals							
Passivation: SiN /			$\mathrm{SiN} / \mathrm{SiO} 2$						
Die Size:		59×59							
Number of Transistors:		150045							
Interconnect:		Aluminum / 0.5\% Copper							
Gate Oxide Thickness:		140Å							
ESD CDM									
DESCRIPTION	DATE CODE/PRODUCT/LOT			CONDITION	READPOIN		QTY	FAILS	FA\#
ESD SENSITIVITY	1051	MAX17042	XJ111300AC	JESD22-C101 CDM 250 VOLTS	3	PUL'S	5	0	
ESD SENSITIVITY	1051	MAX17042	XJ111300AC	JESD22-C101 CDM 500 VOLTS	3	PUL'S	5	0	
ESD SENSITIVITY	1051	MAX17042	XJ111300AC	JESD22-C101 CDM 750 VOLTS	3	PUL'S	5	0	
					Total:		0		
ESD HBM									
DESCRIPTION	DATE	CODE/PROD	LOT	CONDITION		POIN	QTY	FAILS	FA\#
ESD SENSITIVITY	1247	MAX17042	ZX384937AL	JESD22-A114 HBM 500 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1247	MAX17042	ZX384937AL	JESD22-A114 HBM 1000 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1247	MAX17042	ZX384937AL	JESD22-A114 HBM 1500 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1247	MAX17042	ZX384937AL	JESD22-A114 HBM 2000 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1247	MAX17042	ZX384937AL	JESD22-A114 HBM 2500 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1247	MAX17042	ZX384937AL	JESD22-A114 HBM 3000 VOLTS	1	PUL'S	5	0	

Cumulative monitor data for the S18 Process results in a FIT Rate of 0.05 @ 25C and 0.93 @ 55C (0.8 eV, 60\% UCL).
MAX17042, MAX17047, MAX17050 and MAX17051 are built with the identical die.

